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A thermal boundary layer, in which the temperature and velocity fields are coupled 
by buoyancy, flows along a horizontal, insulated wall. For sufficiently low local 
Froude number the solution terminates in a singularity with rising skin friction and 
falling pressure. The structure of the singularity is obtained and the results are 
compared with numerical solutions of the horizontal boundary-layer equations. A 
novel feature of the analysis is that the powers of the streamwise coordinate involved 
in the structure of the singularity do not appear to be simple rational numbers and 
are determined from the solution of a pair of ordinary differential equations which 
govern the flow in an inner viscous region close to the wall. Modifications of the 
theory are noted for cases where either the temperature or a non-zero heat transfer 
are specified a t  the wall. 

1. Introduction 
In  classical boundary-layer theory an adverse pressure gradient associated with 

decelerating external flow heralds the occurrence of the Goldstein (1948) singularity. 
In general this leads to the breakdown of a global high-Reynolds-number theory 
based on a minor viscous adjustment to the Euler solution in a region confined to the 
neighbourhood of a solid body. Although the resolution of the difficulty lies in a 
completely new structure (Stewartson 1970; Smith 1982) in which the Goldstein 
singularity is avoided, the existence of the singularity and more generally a full 
understanding of the properties of the boundary-layer equations have played a 
central role in the determination of high-Reynolds-number flows. In  buoyancy-free 
boundary layers the pressure gradient is known from the external flow and the 
removal of this constraint on a short streamwise lengthscale (Stewartson & Williams 
1969 ; Messiter 1970) allows separation to occur smoothly, thereby avoiding the 
Goldstein singularity. However, in horizontal thermal boundary layers where 
buoyancy has a significant effect on the flow field the pressure gradient generally 
varies with depth in the layer so that although it is predetermined at the edge of the 
boundary layer it must otherwise be found as part of the solution process, along with 
both the temperature and velocity fields. A Goldstein singularity is no longer 
necessarily appropriate and the present paper addresses the question of what type of 
singularity may occur in a buoyant thermal boundary layer on a horizontal wall. 

There is a considerable body of work concerned with the nature of singularities of 
the boundary-layer equations at separation in natural convective flows on vertical 
plates. Merkin (1969) performed numerical calculations for an isothermal plate while 
Wilks (1974) and Hunt & Wilks (1980) considered both constant-heat-flux and 
constant-temperature boundary conditions. Further work by Messiter & Linan 
(1976), Merkin (1983) and Ingham (1985) has considered the effects of leading and 
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trailing edges, perturbations to the temperature and geometry of the plate surface 
and sudden heating. Previous theoretical studies of buoyancy effects in horizontal 
thermal boundary layers have concentrated on flows generated by a uniformly 
heated or cooled plate. Stewartson (1958) considered an isothermal semi-infinite 
plate and his results as interpreted by Gill, Zeh & del Casal (1965) established the 
existence of similarity solutions only for the boundary layer above a heated surface 
or below a cooled surface. Theoretical work on the cooled upward-facing (or heated 
downward-facing) plate has been carried out using an integral analysis by Clifton & 
Chapman (1969). Jones (1973) and Pera & Gebhart (1973) considered the effect of a 
small inclination of the plate, while effects of mass transfer from the plate have been 
incorporated by Bandrowski & Rybski (1976) (see also Kerr 1980) and non- 
Boussinesq effects by Ackroyd (1976). Experimental work on free convection from 
heated or cooled plates has been reported by Rotem & Claassen (1969), Aihara, 
Yamada & Endo (1972), Goldstein, Sparrow & Jones (1973), Restrepo & Glicksman 
(1974), Al-Arabi & El-Riedy (1976), Faw & Dullforce (1981) and Hatfield & Edwards 
( 1981). Further experimental work and numerical calculations have also been carried 
out by Goldstein & Lau (1983). 

There seems to have been little previous theoretical work on buoyancy effects for 
thermal boundary layers on insulated horizontal walls. Such layers may exist, for 
example, within a thermal cavity flow driven by lateral heating (Bejan, Al-Homoud 
& Imberger 1981; Simpkins & Chen 1986; Patterson & Armfield 1990) where fluid 
emerges from the vicinity of the lower cold and upper hot corners of the cavity in the 
form of ‘intrusion ’ jets. In  the boundary layers established on the horizontal 
insulated walls the flow takes place within a stable stratification as the isotherms 
descending near the cold wall and ascending near the hot wall are convected around 
the corners and along the horizontal boundaries. The thermal environment is 
comparable to that of the flow above a cooled horizontal plate or below a heated 
plate, the statically stable situation in which, as mentioned above, a similarity 
solution does not exist for natural convective flow (Gill et al. 1965). However such a 
boundary layer can exist if inertial effects are sufficiently strong, such as those 
resulting from a jet-like flow upstream or from an external velocity a t  the edge of the 
boundary layer. These requirements are essentially equivalent to a sufficiently high 
Froude number for the flow, the Froude number being a measure of the importance 
of inertia, as supplied by the external flow, relative to the adverse pressure gradient 
due to buoyancy. In  situations where the flow is initiated by strong inertial effects 
the Froude number is effectively dependent on the downstream location in the 
boundary layer, leading to the possibility of a termination of the boundary-layer 
solution if, as the flow proceeds, its value falls below a critical level. 

Evidence that under certain circumstances a buoyant horizontal boundary layer 
terminates in a singularity has been found in finite-difference computations of the 
relevant partial differential equations by Gargaro ( 1991), who considered a boundary 
layer on an insulated horizontal wall driven by a constant external velocity. 
Consideration of possible downstream asymptotes confirms that similarity solutions 
do not exist for sufficiently low Froude number (Daniels, Blythe & Simpkins 1987) 
and Gargaro’s calculations show that in many circumstances the boundary layer, 
initiated by appropriate velocity and temperature profiles a t  x = 0, terminates in a 
singularity at a finite value of the streamwise coordinate, x = xo. Furthermore the 
singularity is not associated with a point of separation but with a sudden rise in skin 
friction. 

In $2 the governing equations and boundary conditions for the horizontal 
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boundary-layer flow are formulated. The similarity solution described by Daniels 
et al. (1987) is briefly discussed and is shown to indicate the possibility of a singularity 
of the boundary-layer equations when interpreted in the sense of a slowly varying 
approximation. The actual structure of the singularity is proposed in $3 and requires 
consideration of inner and outer regions of the boundary layer in the limit as 
x +. xo - . The streamwise variation in the outer region is primarily inviscid and the 
inner viscous region is needed to ensure that the boundary conditions a t  the wall are 
satisfied. 

In  the outer region the equations reduce to a second-order Sturm-Liouville 
eigenvalue problem, which is discussed in $4. It is the existence of a solution to this 
problem at a given downstream location in the boundary layer that determines 
whether and where the singularity occurs. This position is related to the value of a 
local Froude number for the flow. The overall structure and streamwise variation of 
the solution as the singularity is approached are only determined when the solutions 
for the flow and temperature fields in the inner viscous region have been found. 
Buoyancy does not affect the inner flow to leading order and so the velocity and 
temperature fields can be considered separately : the inner flow field is determined in 
$ 5  and the inner temperature field in $6. Minor modifications needed to allow for a 
non-zero heat flux at  the wall or a specified wall temperature are also noted. A 
discussion of the results in $7 includes a comparison with Gargaro’s (1991) numerical 
computations. 

2. Formulation 
Consider two-dimensional motion in a fluid of mean density p, kinematic viscosity 

v ,  thermal diffusivity K and coefficient of thermal expansion 01* set up by velocity and 
temperature profiles of vertical scale x* - h along an insulated horizontal wall which 
coincides with the x*-axis. Away from the wall the flow has constant speed U,* in the 
x*-direction and constant temperature T,*. In the Boussinesq approximation the 
governing equations for steady flow are 

where the velocity components a, m are made non-dimensional by v l h ,  (x*,z*) = 
h ( z ,  Z) and the pressure and temperature fields are given by 

p* = - p g * z * + ( p v 2 / h 2 ) p ( ~ , ~ ,  (2.5) 
(2.6) 

where g* is the acceleration due to gravity which acts in the negative z*-direction. 
The two parameters appearing in (2.3) and (2.4) are the Rayleigh number and 
Prandtl number defined by 

respectively. 

T* = T,* + T,* T ( E ,  23, 

R = a*g*T,* h 3 / v ~ ,  CT = v / K ,  (2.7) 
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In the limit of large Rayleigh number and large external flow the motion assumes 
a boundary-layer form in which 

(2.8) 
T = T(x,z)+ ..., = RP(x,z)+ ..., ti =&u(x,z)+ ..., 

zz = w(x,z)+ ... (R 4 l),  

where z = dx and .Z = z. Assuming that 

Ut =&Uv/h (R >> 1 )  

the boundary-layer problem is to solve 

au aw -+- = 0, ax az 

au au ap a2u u-+w- = --+- 
ax aZ ax a z 2  ' 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 
aT 

subject to U = W = - = O  on z =  0, az 

and 

T+O, p+O,  u+U as z + c o  

u = o(z), T = p(z) at x = 0. 

(2.15) 

(2.16) 

Here d and !i? are velocity and temperature profiles with d > 0 and 
boundary layer is initiated by forward flow with a statically stable stratification. 

< 0 so that the 

A stream function $ is introduced such that 

ax 
u = -  w=-- 

a Z  
(2.17) 

and it can be established from (2.13), (2.14) and (2.15) that the heat-flux integral 

JOm $ g d z  = Q (2.18) 

is constant for all values of x in the boundary layer. This represents the fact that no 
heat can escape from the edge of the boundary layer or through the insulated wall. 

Solutions of the thermal boundary-layer problem (2.10)-(2.16) have been 
computed by Gargaro (1991) although the initial profiles (2.16) were replaced by 
forms equivalent to the occurrence of a non-buoyant jet flow upstream, of the type 
first analysed by Glauert (1956), equivalent to the behaviour 

$ N xi&), T - x-@(p) (@ 2 0,8 < 0) (2.19) 

as x+O, where p = z / d  and q5 and 8 are known functions of p. In any event the 
constant Q can be determined by evaluation of the integral (2.18) as x+ 0. Gargaro's 
calculations based on finite differences and a downstream marching procedure show 
that if U is sufficiently large the flow develops smoothly downstream and ultimately 
attains a similarity form in which 

$ - x ~ F ( { ) ,  T - x - ~ G ( [ )  (2.20) 
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2 4 6 
P 

FIQURE 1. Solution of (2.25)-(2.28) showing 9 as a function of 7 for cr = 1 .  

as x+ co, where 5 = z/&. Here from (2.13)-(2.15) 

G’ = -Pexp(  -g r lFdC) ,  

where G! is a constant and F satisfies 

with F=F’=O ( C = O ) ,  F + U  ( c+oO) .  

From (2.18), 

i$?r[rF2exp( -!jv[Fd)dC= Q. 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

1 -  - 
By making transformations G! = @h, F = SZaF(C), 6 = equation (2.22) 

becomes 

and can be solved subject to 

p l l l + L @ p  = 1 2c - 1 exp ( - 9, 1 fi dc) 

- I  I - 
F = F ’ = o ,  p”=q ( 5 ~ 0 )  

for a range of values of 7 to obtain 

where from (2.24) d is determined by 

9 = U/Qi = h%” (a), 

a = 2/{ r [om f i 2  exp (-;a dc) dt}. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Computations described by Daniels et al. (1987) indicate the existence of dual 
solutions for 9 above a critical value So (v).  Results for unit Prandtl number are 
shown in figure 1, and So (1) x 2.1 ; the parameter 9 is associated with the Froude 
number of the flow. Non-existence of a solution in the absence of external flow 
(F = 0) can be compared to the equivalent result for an isothermal plate obtained 
by Stewartson (1958) and Gill et al. (1965). 

The above results indicate that the boundary-layer flow may be sustainable as x 
increases indefinitely when U/Qi is greater than Fo (v).  In Gargaro’s computations, 
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as the flow evolves from the initial jet profile (2.19) the wall temperature rises and 
the velocity decreases in the adverse pressure gradient 

generated by buoyancy. At very low values of U/Q% this results in the onset of reverse 
flow within the boundary layer, a t  which point the computation is unable to proceed 
further downstream. However, at higher values of U/Qi a forward flow is maintained 
which ultimately terminates in a singularity a t  a finite value of x. The singularity is 
characterized by a sudden rise in the skin friction associated with a rapid drop in the 
pressure and a decrease in the displacement thickness of the boundary layer. At 
sufficiently high values of U/Qi the singularity is avoided and the flow is able to 
attain the asymptotic form (2.20) as x + co. 

The similarity solution (2.20) can be used as the basis for an approximate method 
of predicting the existence of a singularity in the boundary layer by considering 9 
to be a slowly-decreasing function of x. This will be equivalent, for example, to a 
slowly decelerating external stream and the skin friction y = F”(0) will fall, following 
the right-hand branch of figure 1, until i t  reaches the value yo a t  which 9 = 9,. 
There, 

F = Po (6) + (Y-Yo)F,  (0 + . ..) 

F = F0+(y-yo)2F1+ ..., 
B = SZ,+(y-yo)SZ,+..., (2.30) 

where 4 = aF/ay(y = yo )  and SZ, = dB/dy(y = yo). The situation can be compared 
to that in a classical boundary-layer flow driven by an external velocity a?, 
where F is the solution of the Falkner-Skan equation and solutions exist for 
9 > 9, = -0.0904 (Hartree 1937; Stewartson 1954). Then 4 = aF/ay(y = yo) = 
-9; ’F;  and since the requirement that  F;(O) = 0 is equivalent to  F,”(O) = 0 it  
follows that yo = 0, and the singularity corresponds to the point of separation of the 
boundary layer. In  the thermal boundary layer, however, it is readily established 
that Fl is not proportional to  Fh owing to the presence of the term which explicitly 
involves g on the right-hand side of (2.22). As a result, yo > 0 and the singular 
behaviour of F as a function of 9 represented by (2.30) does not correspond to  a 
point of separation. This is also a property of the exact structure of the singularity 
to be considered next. 

3. Structure of the singularity at xo 
Consider now the solution of the thermal boundary-layer equations (2.10)-(2.16) 

subject to a constant external velocity U,  heat flux Q and Prandtl number r such 
that as the solution proceeds downstream from the initial profile (2.16) or (2.19) a 
singularity develops a t  x = x,. I n  the main part of the boundary layer it is assumed 
that the flow has the form 

(3.1) 1 $b = @,(z)+Xa$b1(Z)+.. . ,  u= U o ( Z ) + X a u l ( Z ) +  ..., 
p = p ,  (2) + X a p l  ( 2 )  + . .., T = T, (2) +Xu TI (2) + . . ., 

as X + O ,  where X = zo-x and a is a constant to be determined. Here 
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with uo(co) = U, and it is supposed that 

$o - azb, T, - To(0)+/3zc as z + O ,  (3.3) 

where b and c are further constants to be determined and a, /3 > 0. Provided that 
a < 1 all of the functions appearing in (3.1) are solutions of the inviscid equations, 
suggesting that an inner region will occur in which viscosity balances inertia and in 
which the flow is driven at least partly by the streamwise pressure gradient aplax. 

If this inner region is of thickness z - X d  as X +- 0 it is necessary that b > 1, 

d = l / ( b +  l ) ,  u = 2(b--l)/(b+ 1 )  (3 .4 )  

and then in the inner region 

as X+O where 7 = z/X1/(l+b). Substitution into (2.11), (2.12) then shows that if 
b < $  

q(7) = q (constant) (3.6) 

and that 
b-1  ,2 2 ( b - l )  

9. ff”+-f =-- f”-- b 
b + 1  b f l  b + l  

Boundary conditions for f require no slip at  the wall, 

f = f ’ = O  ( 7 = 0 ) ,  

and matching with the outer solution for $ o :  

(3.7) 

f “ “ T b  (7+0O). ( 3 . 9 )  

Similarly from (2.13) the inner temperature function g satisfies 

U 
9’’ - - (bfg’ - cf ’ g )  = 0 

l + b  
(3.10) 

with boundary conditions 

g’=O (7 = O ) ,  g-p7c  (7+0O). (3.11) 

For b > 1 the general form of the solution for f as 7 + 00 is 

f - k, vb + k, 72-b + k3 vb-’ + k, 74-3b, (3.12) 

where k, and k, are arbitrary constants and 

ki ( 2 - b )  
k -  

klb(2b-3)’ 4 -  2 b k l ( 4 b - 5 ) ’  
P k ,  = (3.13) 

The constant k, corresponds to an origin shift in 7 and the ordering of terms in (3.12) 
assumes < b < #, to be confirmed below. From (3.9) i t  is required that k,  = a > 0 
and for a given value of b it is possible to select q to avoid f approaching infinity at 
finite 7 or a negative form proportional to qb as 7 + 00. As a result of this both q and 

k3 = k3 ( b )  (3.14) 

are determined from the numerical solution for f. 
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In the outer region substitution of (3.1) into (2.11)-(2.13) gives 

so that 

and $, satisfies 

(3.16) 

(3.17) 

This equation for $, must be solved subject to 

$,/zb-l+O as z+O,  (3.18) 

in order that when b < $ an inner solution for $ is not generated larger than that 
already assumed in (3.5). Provided there exists a solution of (3.17) and (3.18) it 
follows that - d , P  as z+O,  (3.19) 

where d, is a constant which must be chosen as 

P 
- ab(2b-3)' 

d -  (3.20) 

in order that the solution matches consistently with the term k2r]2-b in the inner 
solution forf. From (3.16) and (3.17) this also ensures that near the wall the outer 
pressure p1 (0) = q drives the inner flow. The eigenvalue problem (3.17), (3.18) is 
discussed in $4. 

It remains to find the two constants b and c which determine the form of the 
boundary-layer profiles $o and T, near the wall and, through the relations (3.4), the 
extent of the inner region and the streamwise gradients in the outer solution. The 
value of b is fixed by the requirement that in the solution forf 

k, ( b )  = 0, (3.21) 

and in $5 it will be shown that such a value exists in the range < b < %. If k ,  were 
non-zero the inner form (3.12) would generate corrections in the outer solutions (3.1) 
of order X1l(l+b). The corresponding function of z in the solution for the stream 
function would satisfy the same equation as that for $, but would need to have the 
form k,zb-' as z+O.  Such a solution would not exist because the profiles uo and T, 
are precisely those for which the solution has the behaviour (3.18) as z+O. 

Finally the value of c is fixed by the requirement that in the solution for g an 
exponentially large form is avoided as r ]  --f m. Computations of c for a range of 
Randtl  numbers are described in $6. 

4. Outer eigenvalue problem 
The occurrence of the singularity is fundamentally linked to the existence of an 

eigensolution of the system (3.17), (3.18) when b < i, an alternative form of which can 
be obtained by differentiation, giving 

uO$;-u;$, = ---$,, 1 0  

flu0 
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This may be further simplified by setting 

$1 = uo ~ v ( z ) ,  (4.3) 
so that Y satisfies the second-order Sturm-Liouville self-adjoint eigenvalue problem 
(see for example Ross 1964, p. 414) 

d 
-(u: dz ")+u-'T;, Y = 0, (4.4) 

with boundary conditions 

Y+O ( z+O) ,  " + O  ( z + 0 O ) .  (4.5) 

At infinity !P must approach a constant value while at  the origin non-zero solutions 
must be excluded. The eigenvalue can be regarded as the downstream location xo at 
which the boundary-layer profiles uo and Th are such as t o  allow the existence of an 
eigensolution, but of course in a typical boundary-layer calculation these profiles are 
not known analytically. Although an explicit solution of the system does not appear 
to be possible, progress can be made by two approximate methods, one based on an 
assumption that a is large and another on the assumption of simplified analytical 
forms for uo and Th. 

First assume that uo and T, are arbitrary finite functions of z and that u is large. 
Then Y can be approximated by an expansion 

(4.6) 

and substitution into (4.4) and use of the boundary condition at infinity gives at 
leading order 

where C,  is a constant. At order u-l, Yl ( 0 0 )  may be taken as zero assuming that 
Y ( w )  = C,  is used as a normalization for Y, and then 

Y = Yo (2) + u-1 !PI ( z )  + . . . , 

Yo (4 = c,, (4.7) 

Now as z+o,  

T, ( O )  23-2b + . . .) + . . .}. 
a W ( 3  - 2b) 

!P - Co{ 1 + u-l(/y T, uo2 dz - (4.9) 

Since T, < 0 and u: > 0 this result shows that the combined effect of buoyancy and 
forward flow is to reduce the value of Y(O), suggesting the possibility of its value 
reaching zero for sufficiently low forward velocity (uo), sufficiently low Prandtl 
number or sufficiently high buoyancy (T,). The result (4.9) is no longer formally valid 
when u is finite but as an approximate estimate it suggests that an eigenfunction and 
hence the singularity will exist when the flow reaches a point at which 

(4.10) 

The combination on the left-hand side is effectively a local Richardson number or the 
square of a local inverse Froude number for the flow (Turner 1973, p.12) and when 
its value has risen sufficiently high the singularity will develop within the boundary 
layer. Note that in (4.9) the term in z3--2b provides the correct behaviour for $l as 
z + O ,  as given by (3.19) and (3.20), provided 

c, = d T ,  (0). (4.11) 
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A second method of analysing the eigenvalue problem (4.4), (4.5) is to replace uo 
and Tb by elementary functions. Simple forms with the correct type of behaviour as 
z+co are 

uo = 0, T;I = ($/Z) exp ( -z/Z), (4.12) 

where 8, $ and Z are constants. These forms correspond to behaviour a t  the origin 
equivalent to b = 1 and c = 1 in (3.3) which are not the correct values to be identified 
in 55 below. However, the general solution of the resulting eigenvalue equation 

is 

where 

and application of the boundary conditions (4.5) gives B, = 0 and 

2 f i  1; 
m = x n ,  192**., 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

where xn is the nth zero of the Bessel function J,. Thus an infinite set of 
eigenfunctions is identified as the effective local inverse Froude number (??!/a@); 
increases. I n  a boundary-layer computation starting from high Froude number, as in 
Gargaro’s (1  991) calculations, the singularity will develop a t  the point corresponding 
to the lowest zero, x1 = 2.4048. 

5. Inner flow field 
Here it is established that for a certain value of b in the range a < b < Q there is a 

solution of the inner problem (3.7)-(3.9) for f for which k, = 0. It is convenient to 
introduce a transformation 

j ( r )  = ( q a ) - l m + l ) f i ~ ) ,  = ( ,qa) -41(b+1)  q, = ( ~ / ~ p ( b + i )  7, (5.1) 

so that fsatisfies 

(5.2) 

and at the origin is assumed to have the behaviour 

f = f ” = o ,  f”= 1 ( V = O ) .  (5.3) 

Solutions can then be computed numerically from 7 = 0 and for a given value of b, 
can be chosen to avoid an infinite singularity in f a t  finite 4 or a negative form 

proportional to 71” as V+ co , as shown in figure 2. For this value of q, fhas the form 

fw & 1 p + + 2 r ” - b + + 3 7 1 ” - l + 6 4 p - 3 b  (El > O ) ,  (5.4) 

as q+ 00 and by defining d = El in (5.1) the solution for f has the behaviour f - avb 
as r-+ co, as required by (3.9). In (5.4) the constants k2 and E4 are given by 

- P(2-b)  E -  P k ,  = 2 
- El b( 2b - 3) ’ 2bk1 (4b - 5) ’ (5.5) 
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FIGURE 2. Solution of (5.2), (5.3) for 6 = # showing how 4 is chosen to ensure f- El as ?j+ co. 

but like El, the value of E3 can only be determined from the overall solution for 5 
For general b in the range $ < b < f the value of E3 is non-zero and it is possible to 

obtain analytical predictions of its form in the two limiting cases b + f and b + 4. In  
order to investigate the former limit it is convenient to set b = f - S  and then from 
(5.4) 

When b = f equation (5.2) becomes 

p”-9J7+1J2 = -&- (5.7) 

f- El++k,+lnq+k+ (q+co), (5 .8)  

and the positive solution which satisfies (5.3) and approaches El ?$ a,s T+ co has the 
form 

where k, = -2q/3gl, El > 0 and from a numerical solution of (5.7), p x 0.640. 
Comparison of (5.6) and (5.8) gives to leading order E2+E3 = k and S ( E 2 - E 3 )  = k, 
which implies that in particular 

E3 - - ikO(f -b) - ’  ( b + f )  (5-9) 

and since k,  < 0, this shows that E3 becomes large and positive as b + t -  . 

(5.4) 

f- El + (1 + 61n T+ . . .) + E2 + (1 - 61n q+ . . .) 

In  order to investigate the limit b + it is convenient to set b = $ + 6 and then from 

+g3$(l +61nq+ ...) + E4 $ (1 -3Slnq+ ...) (q+ co). (5.10) 

When b = $ equation (5.2) becomes 

P ” - 3 7 + ’ J 2  = -%- (5.11) 
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I 

5 10 15 
71 

FIQURE 3. Convergence of El, k2, ks for b = 1.36, c i  = 1.024 by equating the numerical solutions for 
f; rif’,fr with the asymptotic form (5.4) at successive values of 7. The expected constant values 
of k,, k,, k, emerge as v+ 03, as indicated by dashed lines. 

and the positive solution which satisfies (5.3) and approaches g1 ?$ as q+ co has the 
form 

f- El?$+E2$+Ko$lnq+K$ (q+co), (5.12) 
where-E, =_ -8q/5E1, K,= -3zi/10g1 and El > 0. Comparison of (5.10) and (5.12) 
gives k ,  + k ,  = K and 6(k, - 3k4) = KO with the result that in particular 

k, - IK 4 0(b - t ) r1  ( b + f ) ,  (5.13) 
and since KO < 0 this shows that E3 becomes large and negative as b +$+ . 

The two results (5.9) and (5.13) show that k, ( b )  varies from large negative values 
to large positive values as b rises from f to $, suggesting the existence of a zero of 
k, ( b )  for one value of b in the range f < b < $. Numerical calculations confirmed this 
and indicated a zero of k ,  a t  b z 1.36. These calculations were carried out by solving 
(5.2), (5.3) for a range of values of b using a fourth-order Runge-Kutta scheme. For 
each value of b the value of Q was adjusted iteratively until the algebraic behaviour 
(5.4) was obtained for large 7. The corresponding values of El and E3 were then 
estimated from the numerical results using the asymptotic formula (5.4). This was 
done by equating values of J qT and r”f’” from the Runge-Kutta formulae to the 
values predicted by (5.4) ; E4 was eliminated from these three equations and then the 
formula for E2 used to leave a pair of equations which determined El and E3. Constant 
forms should be obtained for sufficiently large f and this was found to be the case, 
although the close proximity of the algebraic terms in (5.4) leads to relatively slow 
convergence of E,, evident from the typical set of results shown in figure 3. The 
results are summarized in table I ,  and figure 4 shows E, and q as functions of b in the 

- 
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FIQURE 4. Values of &, and ij in the range 0 < b < 2 obtained from (5.2)-(5.4). 

FIGURE 5. Solutions for fand f’ at b = 1.36, = 1.024. 

b 

1.300 
1.325 
1.350 
1.360 
1.370 
1.400 
1.425 
1.450 

P 
1.286 
1.166 
1.062 
1.024 
0.988 
0.890 
0.818 
0.753 

El 

1.567 
1.478 
1.397 
1.368 
1.339 
1.258 
1.197 
1.141 

4 
- 1.579 
-1.701 
- 1.877 
- 1.966 
- 2.072 
-2.527 
-3.197 
- 4.55 1 

-2.3 
- 1.1 
-0.3 

0 
0.3 
1.1 
1.9 
3.5 

TABLE 1. Results from the numerical solution of (5.2)-(5.4) in the range 8 < b < # 

extended range i 4 b 4 2, confirming in particular the asymptotic forms predicted 
by (5.9) and (5.13) as b-+$ and b + i .  The solution forfat b = 1.36 is shown in figure 
5 and the corresponding value of Q is 1.024. 

A few remarks on the nature of the solution outside the range < b < should also 
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be made. Both E, and qvanish at b = 2, where the relevant solution of (5.2), (5.3) is 
f= ha, and in 2 < b < 3 become positive and negative respectively, with q+ - co as 
b + 3 - . As b decreases below f, 151 becomes infinite when the term E3?--l coincides 
with a term E5F-sb in the asympt9tic form ofJ i.e. when b ,= i. From a local analysis 
it is readily established that E, - k, ( b  -$-l as b --f 3 where k, < 0, indicating another 
zero of k, in the interval 3 < b < g. Numerical results become progressively more 
difficult to obtain as b decreases below f because an increasing number of terms must 
be taken into account in the asymptotic form offas 7’ 00. However, it is anticipated 
that there is an infinite set of zeros of k,, with one zero in each of the intervals 
bounded by the points b = 1 ++-’ (n = 1,2, . . .) at which 1E31 becomes infinitely large. 
Zeros of k, for which b < 4 are not relevant to the structure of the singularity for the 
following reason. In the outer solution (3.1) a term X Z a  $2 ( z )  in the expansion of the 
stream function satisfies an equation identical to that for but with an additional 
inhomogeneous term containing nonlinear products of $1, and their derivatives, 
One of the complementary solutions for $2 is $l with the result that the 
inhomogeneity generates contributions to +kZ proportional to z4-3b and 9 - l  as z + 0. 
The former matches with the term involving k, in the inner solution for f while the 
latter generates a correction term in the inner solution of order X5(b-1)l(b+1). This is 
smaller than the leading term of order Xbl(b+l) only if 4b-5 > 0 and so for the 
proposed structure to remain consistent it is necessary that b > 4. The most singular 
form of the solution therefore corresponds to the zero of k, in the interval f < b < i. 
For b > changes because then the first of 
the two inner asymptotes Pb and 2-l  dominates and there are no solutions for which 
Y + 0 as z + 0. The next zero of k, is at  b = 2 but it corresponds to q = 0, $l = 0 and 
a stream-function profile $, proportional to z2 as z+O,  equivalent to a boundary 
layer which proceeds through 5, in a regular fashion. The present work does not rule 
out the possibility of singular structures with b > $ for boundary-layer developments 
associated with significantly different initial conditions or boundary conditions, 
although a structure precisely of Goldstein form ( b  = 3) would only be possible at  
infinite Froude number when the buoyancy term on the right-hand side of (4.1) is 
negligible. 

The system (5.2), (5.3) has been studied for b = in the context of boundary-layer 
separation a t  a free streamline by Ackerberg (1970), and for b = t in connection with 
hypersonic free interactions by Brown, Stewartson & Williams (1975) ; the solution 
identified here for thermal boundary -layer flow may also provide a possible 
alternative structure for the singularity associated with an expansive free interaction 
in hypersonic flow. 

the character of the outer problem for 

6. Inner temperature field 
The inner temperature field and the value of c can now be found by solving (3.10), 

(3.11) with b = 1.36 and f the corresponding solution found above. Here it is 
convenient to set 

9(7)  = P ( q 4 c ’ ( b + 1 )  m), (6.1) 

where 7 is defined by (5.1). Then g satisfies 
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500 

FIGURE 6. The first three eigenfunctions of (6.2), (6.3) for CT = 1, corresponding to (a) c = 2.20, 
( b )  c = 4.42, (c) c = 6.65. 

L 

FIGURE 7. The leading eigenfunction of (6.2), (6.3) for (T = 0.1, corresponding to c = 2.49. 

Since (6.2) possesses exponentially large solutions as q-+ GQ, this constitutes an 
eigenvalue problem for c and numerical solutions were obtained by computing 
inwards to the origin using a fourth-order Runge-Kutta scheme, starting from the 
behaviour a t  large 7. The value of c was then adjusted iteratively until the wall 
condition 9' = 0 was satisfied. Results of this procedure including the critical values 
of c are given for a range of Prandtl numbers in figures 6 and 7, and table 2. Several 
roots for c were found in some cases although the expectation is that  the lowest one 
is generated at the singularity and is therefore the value which appears in (3.3) and 
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0- C 

1.5 2.18 
1 .o 2.20 
0.5 2.22 
0.1 2.49 
0.05 3.07 
0.025 4.27 
0.01 7.83 

TABLE 2. Leading eigenvalues c of the system (6.2), (6.3) with b = 1.36 

(3.5). It should be noted that the solution of (6.2), (6.3) for which q is constant and 
c = 0 can be discounted as it corresponds to the term T, (0) already incorporated in 
the inner behaviour (3.3). 

An infinite family of roots for c can be expected at  a given Prandtl number, as can 
be seen from a simplified version of (6.2) in which f i s  approximated by the linear 
form 
with b = 1. Then g satisfies 

- 
f = mi, 

and the solution which avoids exponential growth as ?f+ co is 

where U is the parabolic cylinder function defined by Abramowitz & Stegun (1965, 
p. 686). The outer behaviour g - co is satisfied by choosing E = (0l(r/2)-"/~ 
and the wall condition { ( O )  = 0 leads to an infinite set of eigenvalues 

Again the solution for which c = 0 and g is constant can be discounted and the 
relevant solution here is quadratic in 

A t  this point it is worth noting two minor modifications of the present theory 
needed to cater for alternative thermal boundary conditions at the wall. First, if the 
wall temperature is specified rather than the heat transfer, so that 

a similar inner and outer structure is possible in which T, (0) = T, (xo) and the first 
boundary condition in (6.3) is replaced by 

g = o  ( T =  0). (6.9) 
Again an infinite sequence of eigenvalues c is expected and, for the approximation 
(6.4), result (6.7) is replaced by 

c = 2n+l  (n = 0,1,  ...). (6.10) 
Generally, however, assuming that T:, (xo) + 0 the form of the inner expansion for T 
in (3.5) will depend on whether the lowest eigenvalue for c is less than 1 + b  x 2.36. 
If it is not, there will be a more significant inner term in (3.5) linear in X 
corresponding to c = 1 + b and generated by the condition g = - TL (xo) at 1 = 0, 
together with the outer requirement g - / 3 ~ * + ~  as 7 + co. 

A second possibility is that the wall heat transfer is specified and non-zero so that 

as 

c = 2 n  ( n = 0 , 1 , 2  ,... ). (6.7) 

as 7-t co. 

T = T,(x) on z = 0, (6.8) 

3T 
- = H , ( z )  a2 on z = o .  (6.11) 
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Again a similar inner and outer structure appears to be possible with the leading 
eigenvalue for c as specified in table 2. However, the inner expansion for T in (3.5) 
will now contain a more dominant term corresponding to c = I and a solution of 
(3.10) for g generated by the condition g’ = H ,  (xo) at r ]  = 0, together with the outer 
requirement g N pr] as r] --f co. 

Neither of the conditions (6.8) and (6.11) has been tested in a full numerical 
solution of the horizontal boundary-layer equations to confirm the existence of a 
singularity in such cases. If such behaviour is possible it must presumably be largely 
dependent on the manner in which the functions T, (2) or H ,  (5) influence the local 
Froude number in the boundary layer. 

7. Summary and discussion 
The nature of a singularity of the horizontal buoyancy-layer equations has been 

established in which the flow adopts a two-tier structure as z + x o - .  In  the outer 
region which spans the main part of the boundary layer the streamwise pressure and 
temperature gradients become infinitely large and are given by 

- a(xo - %)a-1 q (z) ,  
aT 
- N  

ax 

as x + x o ,  where a = 2(b--l)/(b+l) x 0.305 and, since $l ( x )  < 0, = ~ o $ l / u o  is 
negative. Thus the pressure gradient is large and favourable across the layer and the 
temperature is rapidly increasing. The vertical flow component, 

(7.3) 

is negative and the displacement thickness 

where 9, (a) < 0, is rapidly decreasing as fluid is drawn inwards a t  the edge of the 
boundary layer. This fluid is needed to feed the increased streamwise flow near the 
wall where, since (b-2)/(b+ 1) x -0.271 and f”(0) > 0 the skin friction is rapidly 
increasing, 

(uz-$)z-oo % (uz-$o)z-m-(xo-x)a$l  (a), (7.4) 

f”(% (7.6) 
au 
a2 
- ( 5 , O )  N (xo - x ) ( b - z ) / ( b + l )  

and the motion is driven partly by the outer boundary-layer flow and partly by the 
favourable pressure gradient associated with the behaviour 

P(Z9 0) Po (0) + ( 2 0  - X I U  4, (7.6) 
where p, (0) > 0 and q > 0. The inner temperature field is relatively smooth since 
!E, (0) = 0 and at the wall 

(7.7) 
where T, (0) < 0 and g(0)  < 0. The value of c/( 1 + b) is F’randtl-number dependent but 
for u 2 0.3, c is approximately 2.2 and so c / ( l  +b)  z 0.93 indicating that relatively 
little evidence of the singularity will be observed in the wall temperature. The overall 
structure is quite different from that of the Goldstein singularity in a classical 
pressure-driven boundary layer and is characterized by the extra freedom here that 
allows the pressure to evolve interactively within the boundary layer. 

T(x, 0) - T, (0)  + ( x 0 - x ) J ( b + ~ ) g ( O ) ,  
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0.1 0.2 0.3 0.4 0.5 0.6 
E 

FIGURE 8. Wall pressure, wall temperature, skin friction and displacement for 9 = 1 and CT = 0.72 
from Gargaro’s (1991) numerical solution of the $orhntal boundary-layer system (2.10)-(2.15), 
(2.19). The solution is shown as a function of .$ = zz and terminates in a singularity a t  x 0.53355. 

-0.4 0.4 0.8 

FIGURE 9. Profiles of streamwise velocity, shear and temperature in the boundary layer at  
6 = d = 0.53351 for 9 = 1 and D = 0.72 from Gargaro’s (1991) numerical solution of the system 
(2.10)-(2.15), (2.19). 

All of the preceding qualitative properties of the solution are consistent with the 
behaviour observed in Gargaro’s (1991) numerical solution of the boundary-layer 
equations. Some of his results for air (cr = 0.72) and for 9 = 1, where the solution 
terminates at xo z (0.53355)4, are summarized in figure 8. Computations were carried 
out at  extremely small steps in the streamwise direction close to xo although no 
special account was taken of the structure outlined here and indeed the computations 
can be expected to become progressively less accurate as the singularity is 
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2 3 4 5 
- log10 (50  - n 

FIQURE 10. Logarithmic plot of the wall pressure for .F = 1 and Q = 0.72 predicted by Gargaro’s 
(1991) numerical computations ( 0 )  near the singularity at  f ,  on the basis that f,, = 0.53355 and 
p ,  (0) = 0.945. Straight lines indicate slopes corresponding to (a) the predicted value a = 0.305 and 
(b), (c) the values a = $ and a = associated with the upper and lower bounds b = # and b = t 
respectively. 

0.5 1 1 

2 3 4 5 

-log,o (6-0 
FIQURE 11. Logarithmic plot of the skin friction for .F = 1 and (T = 0.72 prec_-ted by Gargaro’s 
(1991) numerical computations ( 0 )  near the singularity a t  5, on the basis that 5, = 0.53355. 
Straight lines indicate slopes corresponding to (a) the predicted value (2 - b) / (  1 + b) = 0.271 and (b), 
(c) the values (2 - b ) / (  1 + b) = 4 and 4 associated with the upper and lower bounds b = t and b = 4 
respectively. 

approached. In  particular the inner region is unlikely to be adequately resolved in 
the z-direction close to the singularity. Figure 9 shows profiles of u, 3u/& and T in 
the boundary layer at position x = (0.53351)4, just ahead of the singularity. The 
main quantitative comparisons between the numerical results and those obtained 
here have been made with a view to confirming the streamwise variation associated 
with the predicted value of the constant b m 1.36. Figure 10 shows a comparison of 
the wall pressure and figure 11 the skin friction. The behaviour predicted by (7.6) and 
(7.5) with b = 1.36 is shown as well as lines corresponding to the two bounding values 
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b = f and b = associated with the theoretical treatment of $5.  Overall the agreement 
appears to be reasonable. 

The key to the existence of the singularity is the value of the local Froude number 
in the boundary layer, as measured by the profiles of velocity and temperature 
gradient uo and To which appear in the outer eigenvalue problem (4.4), (4.5). The 
Froude number is a measure of the forward momentum provided by the external 
velocity U relative to the adverse pressure gradient due to buoyancy. Under general 
circumstances a Froude number for a buoyant thermal flow is based on the ratio 

u*/(a*g*{Tt - T*}z*)i (7.8) 

(u/zlTl)f u. (7.9) 

(Turner 1973, p. 12) which in the present instance reduces to 

As the boundary-layer profiles u and T develop, the local Froude number varies until 
the condition for the existence of the leading eigensolution of (4.4), (4.5) is met and 
at this point the singularity occurs. In the computations performed by Gargaro the 
initial jet profile (2.19) corresponds to a Froude number of order 5-3 as x+O, while 
the large-z asymptote (2.20) corresponds to a suitably defined finite Froude number 
proportional to 9:. Thus for sufficiently low values of B = U / @  the local Froude 
number in the boundary layer decreases to the point where the singularity is 
provoked. In fact, Gargaro found that generally the singularity occurs for a wider 
range of values of U / @  than the range 8 < Po (a) corresponding to non-existence of 
the large-z asymptote (2.20). 

The horizontal boundary-layer problem studied by Gargaro is of interest in the 
context of thermally driven cavity flows. In particular, it is believed to describe the 
flow in a shallow cavity whose endwalls are maintained at  different constant 
temperatures (Daniels et al. 1987). At the cold wall the flow descends as a jet and then 
its evolution along the bottom insulated wall is initially as a non-buoyant jet which 
then diffuses and develops on a longer scale into the horizontal boundary layer 
governed by (2.10)-(2.15) as both buoyancy and an external recirculating flow 
become significant. An unknown factor in this theory is the strength of the external 
flow and therefore whether it is sufficiently small to provoke the transition from 
supercritical to subcritical Froude number. However, there is some evidence that in 
cavities of moderate aspect ratio the flows emerging from the lower cold and upper 
hot corners do undergo internal ‘hydraulic jumps ’ of the type described by Turner 
(1973, p. 64). These have been discussed in the context of transient motions in 
laterally heated square cavities by Ivey (1984) and observed in numerical simulations 
at high Rayleigh numbers by, for example, Winters (1983), Chenoweth & Paolucci 
(1986) and Gaskell & Wright (1987). 

Whether the terminal boundary-layer behaviour described in the present work is 
physically realistic and, indeed, is the precursor of an internal hydraulic jump from 
supercritical to subcritical flow remains to be seen. One possibility is that the singular 
form of the boundary layer described here adjusts on a shorter streamwise 
lengthscale, possibly encompassing separation from the wall, to enable the flow to 
proceed downstream. Although the skin friction increases as the singularity is 
approached this initial trend might be reversed as streamwise gradients become more 
severe. On the other hand, and perhaps more likely, the singularity of the boundary- 
layer equations may herald a complete breakdown of the theory just as the Goldstein 
singularity does in the case of a classical boundary-layer flow when interaction with 
the mainstream is excluded. A mechanism for free interaction would then appear to 
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be necessary upstream and indeed for sufficiently large Froude numbers such 
mechanisms exist in the form of the triple-deck or, for jet-flow, the double-deck 
structure of Smith & Duck (1977). 
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